Атомная энергетика

Энергетика
Реакторы с тяжелой водой под давлением
Проектные параметры и характеристики ВВЭР-СКД
Использование тория
реактор ВВЭР-СКД
Расчеты выгорания рабочих ТВС и ТВС с МА.
реактор БН-350
Конструкция реактора
Опыт эксплуатации РУ БН-350
Вывод из эксплуатации реактора на быстрых нейтронах БН-350
Баксанская нейтринная обсерватория
Основные типы реакторов, принятые к промышленной реализации
АЭС с уран-графитовыми канальными реакторами

Реакторы с тяжелой водой под давлением (PHWR или CADU)

Схема построения и принцип работы очень схож с реактором типа PWR, но в отличии от него в CANDU (рис. 4) топливом служит оксид природного урана. Следовательно, реакции требуется слабо поглощающий нейтроны замедлитель - тяжелая вода (D2O).

Рис. 4. Схема CANDU

7. Реакторы БН - 600

В мире только один реактор БН-600 в России (рис. 5). США свернули программу по исследованию БН. В нем нет замедлителя и энергия вырабатывается за счет деления урана и плутония быстрыми нейтронами. В качестве топлива исполь­зуется двуокись урана UО2 с большим обогащением по 235U (17, 21, 26%) или смесь UO2 и PuO2. В процессе его работы из изотопа 238U (природного урана), специально помещае­мого на периферии активной зоны, может нарабатывается делящийся изотоп плутония 239Pu. Поэтому такой реактор называется размножителем. В них из одного и того же коли­чества урана можно получить в 60 раз больше энергии, чем в реакторах на тепло­вых нейтронах, но они являются дорогостоящими [7, 8].

1 - Шахта; 2 - Корпус; 3 - Главный циркуляционный насос; 4 - Электродвигатель; 5 - Поворотная пробка; 6 - Радиационная защита; 7 - Теплообменник; 8 - Поворотная колонна; 9 - Активная зона

Рис. 5. Схема реактора БН- 600

8. Поколение III и III+

В настоящее время конст­рукторы АЭС в Северной Америке, Японии, Европе, России и Южной Африке имеют с десяток новых проектов реакторов третьего поколения, находящихся на последних стадиях разработки. Реакторы третьего поколения обладают стандартизированным проектом для каждого типа, позволяющим ускорить лицензирова­ние и уменьшить капитальные затраты. Они отличаются более простым проектом, более высоким коэффициентом использования мощности и большим сроком службы - обычно 60 лет. У них минимальное воздействие на окружающую среду, более высокое выгорание при уменьшении потребляемого топлива. В настоящее время проходят разработки реактора на кипящей воде ABWR.

9. Нейтронно-физические расчеты

В расчетах реакторов используются КП для нейтронно-физического расчета. Необходимо иметь информацию о ТВС или стержне системы управления и защиты (СУЗ). К такой информации относятся: характеристика сборки; организация топливного архива (ТА); КП, обеспечивающие доступ пользователя к входной, архивной и выходной информации [9]. В КП предусмотрен обмен расчетными данными через оперативную память ЭВМ [10, 11]. Центральным файлом является ТА, который содержит информацию об элементах рассчитываемой зоны [12]. Содержание ТА: идентифицированные, паспортные, конструкционные и временные характеристики, данные о топливе. ТА заполняется из буферного файла базы данных и должен соответствовать базовой модели холодного состояния. Из известных КП можно отметить следующие: COSMOS [15], MODERN [16], URAN [17], SYNTES [11], JAR [18], TRIGEX [19], ГЕФЕСЕТ [12]. КП COSMOS создана в рамках работы над реактором PFR. Модуль SNAP [20] нейтронно-физического расчета КП COSMOS и ERAMOS. Обеспечивает расчеты в диффузионном приближении. В Англии используется модуль MARC с использованием теории возмущений [19-21]. КП JAR [18] предназначена для расчета реактора типа БН в диффузионном приближении. КП MODERN создана для эксплуатационных расчетов. Ее структура включает следующие модули: формирования нуклидного состава [21, 22]; подготовки каталогов микроконстант, основанный на диффузионном приближении КП ARAMAKO и SYNTES [22]; решении диффузионного уравнения методом итерационного синтеза. Целью создания расчетных моделей является желание обеспечить возможность отслеживания истории целостной технологической единицы. Однако, в работающих КП была обнаружена ограниченность такого подхода, так как большие размеры ТВС ведут к разным скоростям реакций при значительном градиенте плотности тока нейтронов. Реализация отслеживания характеристик ТВС нашла себя на практике. В КП ГЕФЕСТ [11, 13] хранятся характеристики граней ТВС и концентрации трех определяющих нуклидов в шести секторах. Следующий шаг в этом направлении - переход на расчетные модели. Обоснование безопасной работы реактора требует оценки нестационарных процессов, которые начинаются в ТВЭЛе. КП ГЕФЕСТ предназначена для нейтронно-физических расчетов реакторов типа БН. Она создана для расчета в многогрупповом диффузионном приближении и позволяет рассчитывать поля нейтронов в 20000 точках [13]. Большое количество зон определило необходимость разработки метода подготовки констант. В основе этого метода лежит использование библиотеки блокированных микро-констант как функции топливного состава, глубины выгорания и температуры. Эта библиотека рассчитывается КП ARAMAKO. Для расчета движения стержней СУЗ используется алгоритм, позволяющий менять сечения для расчетных точек. Это позволяет определять выгорание поглотителя в зависимости от положения стержней. Спектры нейтронов определяются с помощью 26-группового расчета. Основным модулем КП является - HEXD [23], где реализовано решение диффузионного уравнения. ГЕФЕСТ позволяет выделять область реактора для использования сетки. ТА служит для хранения информации о сборках и стержнях СУЗ. Его структура обеспечивает расчет флюенсов для ТВС. Для расчета эффектов реактивности разработаны алгоритмы теории возмущений. Имеется возможность решения уравнения кинетики в квазистатическом приближении. В КП определяются параметры амплитудной функции (время жизни мгновенных и доли запаздывающих нейтронов). ГЕФЕСТ включает в себя набор независимых модулей: CATAL - подготовка каталогов; BUREM - коррекция высотного распределения нуклидов и флюенсов в выгоревших ТВС; RORDV - расчет концентраций нуклидов в СУЗ; SNEGAAR - расчет макро и микро-сечений для ТВС; HEXG - нейтронно-физический расчет в диффузионном приближении; TEPGAZ - тепло-гидравлический расчет; INTER - определение максимальных значений потоков нейтронов по отдельным сборкам; BURN - расчет изменения нуклидного состава и флюенсов нейтронов; QUASIK - квазистатический расчет. В КП, предназначенных для расчетов реактора типа БН, используется оригинальный метод подготовки констант. Наиболее простой - является подготовка констант в КП URAN, где используется каталог групповых макро-констант (до 60 зон) с использованием параметрических зависимостей. В КП TRIGEX для каждой зоны рассчитываются константы с введением поправок и оценкой спектра нейтронов [23]. Сделанные оценки нейтронных спектров используются для групповых констант с которыми проводится расчет. Цель этого этапа - получение распределения источников нейтронов. Далее проводится 26-групповой расчет инерций источников интегральных спектров. Уточненные спектры используются для вычисления мало-групповых констант. При такой процедуре подготовки констант с большими градиентами не могут быть учтены локальные неоднородности. В КП MODERN решается уравнение переноса в диффузионном приближении с использованием системы распределенных каталогов, которая получается из диффузионного расчета. Далее определяются средние концентрации и вычисляются блокированные микро-сечения. Расчет концентрации нейтронов выполняется КП SYNTES.

Анализ современной атомной энергетики показал, что в ближайшее время могут возникнуть некие проблемы с энергоснабжением. Энергоблоки украинских АЭС уже практически исчерпали свой ресурс. Попытка продлить их срок службы пока не до конца реализована. Ввиду того что параллельно ведутся проектировочные работы над возведением новых энергоблоков, есть возможность избежать перебоев в энергоснабжении. В то время как Украина решает свои проблемы связанные с атомной энергией, во многих странах ведутся разработки реакторов нового поколения, более экономичных, надежных и безопасных. Научная новизна - в работе дана классификация реакторов и показаны новые КП для нейтронно-физи-ческого моделирования. Расчетные погрешности этих КП содержат три основных составляющих: алгоритмическую, константную и модельную.

Практическое значение состоит в том, что сделаны теоретические оценки погрешности синтетического или сеточного метода расчета. На расчетных моделях типа benchmark можно оценить погрешность приближения (диффузионного или кинетического). Константная составляющая погрешности известна исследователю до расчетов и определяется системой. Перед разработчиком КП стоит задача по уменьшению погрешности - это снижение ее модельной составляющей. Алгоритмическая составляющая погрешности может быть оценивается теоретически.

Исследование особенностей U-Pu-Th топливного цикла и его применения для выжигания младших актинидов в водоохлаждаемом реакторе при сверхкритических параметрах с быстрым спектром нейтронов

В настоящее время мировым ядерным сообществом признается, что перспективой развития технологии водоохлаждаемых энергетических реакторов - основы современной атомной энергетики - являются реакторы при сверхкритическом давлении (СКД) теплоносителя. Этот тип реакторов выбран одним из шести направлений, разрабатываемых в рамках Международного форума «Поколение IV» (МФП). Внедрение этой технологии прогнозируется к 2040 г.

Госкорпорацией «Росатом» в рамках МФП в июле 2011 г. была подписана Системная договоренность по участию России в разработке сверхкритического водяного реактора (SCWR).

В ряде институтов России с 2002 г. были активизированы работы по этому направлению. В ГНЦ РФ-ФЭИ в 2002-2006 г.г. был разработан концептуальный проект ВВЭР-СКД - одноконтурного, корпусного водоохлаждаемого реактора с СКД теплоносителя с быстрым спектром нейтронов при 1-о и 2-х ходовой схемах охлаждения [1, 2].

В 2006 - 2008 в сотрудничестве ГНЦ РФ-ФЭИ и ОКБ «Гидропресс» была разработана «Концепция РУ ВВЭР-СКД» [3, 4] в которой были рассмотрены варианты активной зоны с тепловым и быстрым спектрами нейтронов при различных схемах теплоотвода. Определены основные характеристики РУ, конструкция, материалы, схемные решения по энергоблоку, рассмотрены вопросы безопасности, водной химии и др.

Настоящая работа является дальнейшим продолжением и развитием работы, проводимой ОКБ «Гидропресс» и ГНЦ РФ-ФЭИ по одноконтурной ЯЭУ с ВВЭР-СКД при 2-х ходовой схеме охлаждения[5, 6].

В работе рассматриваются уран-плутоний-торий топливные загрузки и анализируются возможности использования реактора в замкнутом топливном цикле (ЗТЦ) и для выжигания младших актинидов.

Оцениваются возможные преимущества при переходе от чехловых кассет к безчехловым.

Проведены расчеты тестовых задач по выгоранию изотопов и распределению неравномерности энерговыделений по твэлам в ТВС с МОХ-топливом и при наличии в ТВС твэлов с МА с использованием разработанного в ГНЦ РФ-ФЭИ программного комплекса WIMS-ACADEM и тестовой программы MCNP, основанной на методе Монте-Карло.

Ядерные реакторы