Магнитное поле соленоида Основы электронной теории магнетизма Явление самоиндукции Энергия магнитного поля. Резонансные явления в колебательном контуре. Теория электропроводности металлов Схема устройства ядерного реактора

Физика конспект лекций. Примеры решений курсовых работ

Явление самоиндукции. Индуктивность проводников.

При любом изменении тока в проводнике его собственное магнитное поле также изменяется. Вместе с ним изменяется и поток магнитной индукции, пронизывающий поверхность, охваченную контуром проводника. В результате в этом контуре индуцируется ЭДС. Это явление называется явлением самоиндукции.

В соответствии с законом Био-Савара-Лапласа индукция магнитного поля В пропорциональна силе тока I в проводнике. Отсюда следует, что поток магнитной индукции  и сила тока I также пропорциональны друг другу:

Коэффициент пропорциональности L называют индуктивностью проводника. За единицу индуктивности в СИ принимают индуктивность такого проводника, у которого при силе тока 1А создается поток магнитной индукции, равный 1Вб. Эту единицу называют Генри, Гн.

Лабораторные работы по физике ОПРЕДЕЛЕНИЕ  ЭДС ИСТОЧНИКА ТОКА КОМПЕНСАЦИОННЫМ МЕТОДОМ 

Индуктивность проводника зависит от его формы и размеров, а также от магнитных свойств окружающей его среды (магнитной проницаемости μ). Заметим при этом, что линейная зависимость между  и I остается справедливой и в том случае, когда μ зависит от напряженности магнитного поля Н, а значит, от I (например, ферромагнитная среда). В этом случае индуктивность L также зависит от I.

Согласно основному закону электромагнитной индукции, ЭДС самоиндукции, возникающая при изменении силы тока в проводнике, есть:

.

Или, записав , будем иметь:

.

В том случае, когда среда не является ферромагнитной L=const, тогда:

Последняя формула дает возможность определить индуктивность L как коэффициент пропорциональности между скоростью изменения силы тока в проводнике и возникающей вследствие этого ЭДС самоиндукции.

Пример вычисления индуктивности. Индуктивность соленоида.

Согласно основному соотношению, связывающему между собой ток I и поток , индуктивность проводника определяется выражением:

Применим эту формулу для расчета индуктивности прямого длинного соленоида (рис.14.6). Имеем:

, где магнитное поле

Рис.14.6. К расчету индуктивности соленоида.

Поток магнитной индукции через один виток катушки ; через все N витков поток равен:

.

Поделив это выражение на I , находим искомую индуктивность соленоида:

где  - число витков на единицу длины;  - объем соленоида.

Если магнитная проницаемость  сердечника зависит от  (силы тока ), что имеет место, когда сердечником соленоида является, например, железный или ферритовый стержень, то  будет зависеть от . Это свойство индуктивности используют, в частности, в различных устройствах релейной защиты электрических цепей при токовых перегрузках.

4.9. Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.

При всяком изменении силы тока в каком-либо контуре в нем возникает ЭДС самоиндукции, которая вызывает появление в этом контуре дополнительных токов, называемых экстратоками. По правилу Ленца экстратоки, возникающие в проводниках вследствие самоиндукции, всегда направлены так, чтобы воспрепятствовать изменению тока, текущего в цепи. В схеме опыта, приведенной на рис.14.7, при замыкании ключа (положение 1) в катушке возникает экстраток замыкания, направление которого противоположно нарастающему току батареи. При этом часть экстратока замыкания ответвляется на батарею, а часть на гальванометр, где его направление совпадает с направлением тока батареи – гальванометр дает дополнительный отброс вправо. 

1 – замыкание ключа: 

2 - размыкание ключа:

Рис.14.7. Экстратоки замыкания и размыкания.

При размыкании ключа (положение 2) магнитный поток в катушке начнет исчезать. В ней возникнет экстраток размыкания, который будет препятствовать убыванию магнитного потока, то есть будет направлен в катушке в ту же сторону, что и убывающий ток. При этом экстраток размыкания теперь целиком проходит через гальванометр, где его направление противоположно направлению первоначального тока – гальванометр дает отброс влево.

Установление и исчезновение тока в цепи, содержащей индуктивность, происходит не мгновенно, а постепенно. Рассмотрим электрическую цепь, состоящую из источника ЭДС , катушки индуктивности L и сопротивления R (рис.14.8). При размыкании ключа в образующейся замкнутой цепи помимо ЭДС  будет действовать ЭДС самоиндукции . По второму правилу Кирхгофа можем написать:  или в виде

.

Решением полученного дифференциального уравнения, полагая, что в начальный момент времени t = 0 ток отсутствовал I(0)=0, является функция:

,

где .

График этой функции приведен на рис.14.8 (кривая 1). Видим, что установление тока в цепи происходит не мгновенно, а с некоторым запаздыванием. Характерное время  называется временем ретардации (запаздывания, задержки).

Рис.14.8. Установление и исчезновение тока в цепи, содержащей индуктивность.

При замыкании ключа образуется контур, содержащий только индуктивность L и сопротивление R (источник ЭДС  при этом блокируется). Теперь в цепи действует только ЭДС самоиндукции , и по закону Ома:  или в виде

 .

Решением этого уравнения, считая, что в начальный момент времени t = 0 ток имел максимальное значение, равное , является функция:

.

График ее приведен на рис.14.8 (кривая 2). Видим, что исчезновение тока в цепи происходит не мгновенно, но с запаздыванием.

  Характерное время  называется в этом случае временем релаксации (восстановления).

Явление электромагнитной индукции. Закон Фарадея и правило Ленца. ЭДС индукции. Электронный механизм возникновения индукционного тока в металлах. Явление электромагнитной индукции было открыто в 1831г. Майклом Фарадеем (Faraday M., 1791-1867), установившим, что в любом замкнутом проводящем контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром, возникает электрический ток, названный им индукционным. Величина индукционного тока не зависит от способа, которым вызывается изменение потока магнитной индукции , но определяется скоростью ее изменения, то есть значением . При изменении знака меняется также направление индукционного тока.

Элементы теории ферромагнетизма. Представление об обменных силах и доменной структуре ферромагнетиков. Закон Кюри - Вейсса.

Движение заряженных частиц в постоянных электрическом и магнитном полях. Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.

Практические применения силы Лоренца. Эффект Холла. К числу одного из известных проявлений силы Лоренца относится эффект, обнаруженный Холлом (Hall E., 1855-1938) в 1880г.


Физика примеры решения задач