Магнитное поле соленоида Основы электронной теории магнетизма Явление самоиндукции Энергия магнитного поля. Резонансные явления в колебательном контуре. Теория электропроводности металлов Схема устройства ядерного реактора

Физика конспект лекций. Примеры решений курсовых работ

Прямоугольный контур с током в однородном магнитном поле

Рассмотрим прямоугольную плоскую рамку с током, помещенную в однородное магнитное поле (рис. 32) так, чтобы линии магнитной индукции были перпендикулярны участкам 1–2 и 3–4 рамки. Для упрощения рисунка провода, подводящие ток к рамке, не показаны. Сдвоенные стрелки представляют вектор магнитной индукции.

Рассматриваемая модель является фундаментальной для понимания работы электродвигателя постоянного тока, представляющего собой совокупность таких рамок с током.

Итак, пусть I – сила тока, текущего по рамке прямоугольной формы со сторонами a и b, – силы Ампера, приложенные к соответствующим сторонам рамки (рис. 32). Из (2.13) следует, что силы и  равны по величине и противоположны по направлению. При заданном направлении  силы  и  приводят только к деформации рамки: в зависимости от направления тока они сжимают или растягивают ее.

Докажем, что силы  и  образуют пару сил, приводя рамку во вращение. На рис. 33 дано изображение сечения рамки, показанной на рис. 32, плоскостью, перпендикулярной сторонам 1–2 и 3–4. На этом рисунке  – магнитный момент прямоугольного контура с током. Направление  связано с направлением тока в контуре правилом правого винта (рис. 2): Энергия электромагнитных волн. Вектор Умова – Пойнтинга Возможность обнаружения электромагнитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл и wм электрического и магнитного полей

где  – площадь прямоугольного контура;  – единичный вектор нормали к плоскости рамки. На стороны рамки 1–2 и 3–4 действуют силы Ампера  и  (рис. 33), противоположные по направлению и равные по величине:

.

Таким образом, действительно  и  образуют пару сил, приводя рамку во вращение. Механический момент M пары сил, расстояние между линиями действия которых равно с (рис. 33), определяется формулой

.

Так как , получаем

. (2.18)

Или в векторном виде

. (2.19)

Вывод. В однородном магнитном поле на прямоугольный контур с током действует пара сил, приводящая его к вращению в направлении положения устойчивого равновесия. При этом ось вращения перпендикулярна вектору магнитной индукции и магнитному моменту контура.

Можно показать, что формула (2.19) справедлива и для плоского контура произвольной формы [2].

Случай, когда , т. е. вектор магнитного момента контура и вектор магнитной индукции имеют одинаковое направление, соответствует положению устойчивого равновесия контура (М = 0). При этом силы, действующие на отдельные участки, стремятся растянуть контур в его плоскости.

Случай, когда , т. е. вектор магнитного момента контура противоположно направлен вектору магнитной индукции, соответствует положению неустойчивого равновесия. При этом силы, действующие на отдельные участки контура, будут сжимать его.

При  механический момент пары сил максимален (подразд. 1.1).

Вычислим работу сил Ампера по повороту контура (рис. 34). Пусть  и   характеризуют начальное и соответственно конечное положение контура в магнитном поле.

Из механики известно [6], что элементарная работа при вращательном движении

,

где  – вращательный момент, а  – элементарный угол поворота контура. Из рис. 34 видно, что увеличению  соответствует уменьшение a. Следовательно,  и элементарная работа по повороту контура

.

При изменении  от значения  до значения  формула для работы сил Ампера по повороту контура в однородном магнитном поле имеет вид

 (2.20)

Полученное выражение для работы сил Ампера позволяет ввести понятие энергии контура с током в магнитном поле. Из (2.20) видно, что энергия контура с током в магнитном поле определяется с точностью до некоторой постоянной:

Эту постоянную удобно взять равной нулю. Тогда

. (2.21)

Устойчивому положению контура () соответствует минимум энергии:

.

Неустойчивому положению контура () соответствует максимум энергии:

.

Как следует из (2.20) и (2.21), работа сил Ампера

, (2.22)

где  и  – энергия контура в начальном и конечном положениях, соответственно. Элементарная работа связана с изменением энергии контура следующим соотношением:

. (2.23)

Контур с током в неоднородном магнитном поле Рассмотрим плоский контур с током в неоднородном магнитном поле. Пусть (для простоты) контур имеет форму окружности. Предположим также, что магнитная индукция увеличивается в положительном направлении оси х, совпадающем с направлением вектора магнитной индукции . Сила Ампера , действующая на элемент контура , перпендикулярна к вектору. Так что силы, приложенные к различным элементам контура, образуют симметричный конический «веер»

Сила Лоренца На частицу с зарядом q, движущуюся со скоростью  в магнитном поле, индукция которого равна действует сила  

Эффект Холла Пусть по проводнику прямоугольного поперечного сечения (b – ширина, а – толщина образца) течет постоянный электрический ток, I – сила тока. Если образец поместить в однородное магнитное поле, перпендикулярное двум его граням, то между двумя другими гранями возникает разность потенциалов.

Магнитные свойства атомов Магнетики – так называются вещества в магнетизме. Это связано с тем, что все без исключения вещества в той или иной степени влияют на магнитное поле, ослабляя или усиливая его.


Физика примеры решения задач