Сопромат Определение деформаций статически неопределимых балок Расчет толстостенных цилиндров Расчет быстровращающегося диска Основные характеристики цикла и предел усталости Диаграмма усталостной прочности

Сопромат курс лекций и примеры решения задач

Известны многие попытки создания гипотез усталостной прочности в сложном напряженном состоянии. Все они сводились в основном к обобщению известных гипотез предельных состояний на случай циклических напряжений. Такой путь, однако, до сих пор не дал положительных результатов, и в настоящее время приходится пользоваться в основном экспериментально установленными зависимостями.

Для наиболее часто встречающегося на практике расчета при двухосном напряженном состоянии , общепринятой в настоящее время является эмпирическая формула Гафа и Полларда

где n — искомый запас усталостной прочности; — запас усталостной прочности в предположении, что касательные напряжения отсутствуют; — запас по касательным напряжениям, установленный в предположении, что .

Приведенная формула применима не только в случае синфазного изменения и , но и при таких циклах, когда максимумы и достигаются не одновременно.

Основы вибропрочности конструкций

Постановка задачи. Явление Резонанса.

До сих пор мы решали основную задачу сопротивления материалов, определяли размеры поперечных сечений частей конструкции и выбирали для них материал лишь при статическом действии нагрузок.

Статическое действие нагрузок имеет место, когда при передаче давления от одной части конструкции на другую или при действии объемных сил механическое движение этих частей не меняется с течением времени. В этом случае каждый элемент конструкции находится в равновесии под действием внешних нагрузок и напряжений.

Постоянство движения характеризуется тем, что скорость рассматриваемых деталей и каждой их части не меняется — отсутствует ускорение частиц этих элементов. Наличие же ускорения частиц рассматриваемого тела или соприкасающихся с ним деталей характеризует уже воздействие динамической нагрузки. Так, давление земли на подпорную стенку будет статической нагрузкой, так как ни стенка, ни земляная масса не движутся, — скорость их постоянна и равна нулю.

Точно так же статическим будет действие поднимаемого груза на канат при постоянной скорости подъема груза. Наоборот, это действие будет динамическим, если груз поднимается с ускорением. Динамическую нагрузку испытывают шатуны паровых машин и двигателей внутреннего сгорания, так как отдельные элементы их движутся с переменной скоростью. В качестве других примеров конструкций, работающих на динамическую нагрузку, можно указать на фундамент машины, имеющей вращающиеся части, расположенные внецентренно относительно оси вращения, — они будут испытывать центростремительное ускорение; можно указать на фундамент и шток парового молота, так как боек молота при ковке теряет свою скорость за очень короткий период времени, что связано с сообщением ему весьма больших ускорений.

Уже из этих примеров видно, что на практике мы можем встречаться с различными видами ускорения рассматриваемой детали или соприкасающихся с ней тел; оно может быть постоянным по величине и направлению или только по направлению; может быть знакопеременным.

При переменных и знакопеременных напряжениях мы встречаемся с явлением разрушения от постепенно развивающейся трещины — с явлением усталости. При резком изменении скорости движения элемента конструкции в зависимости от передачи на него давлений от соседних деталей, когда имеет место явление удара, может обнаружиться хрупкость в таких материалах, которые при статическом действии нагрузок оказывались пластичными. Поэтому при проверке прочности деталей конструкций, подвергающихся действию динамических нагрузок, приходится интересоваться влиянием этих нагрузок не только на величину напряжений в детали, но и на сопротивляемость материала.

Влияние ускорений точек деталей конструкции на напряженное состояние материала может быть учтено следующим образом. Если какое-либо тело движется с ускорением, то это значит, что на него передаются (к нему приложены) силы (давления) от других тел; по закону равенства действия и противодействия оно передает на эти тела равные приложенным силам и противоположно направленные реакции, называемые силами инерции. Это рассуждение применимо также и к каждому элементу движущегося с ускорением тела; этот элемент будет передавать на прилегающие части материала усилия, равные силе инерции этого элемента.

Таким образом, при ускоренном движении частей конструкции в них возникают добавочные вполне реальные напряжения, которые эквивалентны статическим напряжениям, вызванным силами инерции; от каждого элемента стержня на соседние части материала будут передаваться такие напряжения, как будто бы к нему была приложена соответствующая сила инерции.

Отсюда получаем практическое правило для определения напряжений в части конструкции, точки которой испытывают ускорения: надо вычислить эти ускорения и в дополнение к внешним силам, действующим на рассматриваемый элемент конструкции, нагрузить его соответствующими силами инерции. Дальше следует вести расчет так, как будто на стержень действует статическая нагрузка.

Здесь надо различать три случая. Если величина и расположение внешних сил, приложенных к рассматриваемому элементу, не зависят от его деформаций, если эти деформации не изменяют характера движения стержня, то ускорения его точек вычисляются по правилам кинематики твердого тела, и учет динамических воздействий сводится к добавочной статической нагрузке соответствующими силами инерции. Это имеет место в большинстве практически важных случаев (за исключением удара).

Если при этом ускорение будет меняться, то, как правило, возникнут колебания рассматриваемой части конструкции, которые могут в некоторых случаях дать явление, резонанса, связанное с резким увеличением деформаций и напряжений. Эти напряжения могут достигать весьма большой величины и будут прибавляться к тем, которые учитываются путем введения в расчет статической нагрузки силами инерции.

Наконец, могут быть случаи (удар), когда величина ускорений, а значит, и соответствующих сил инерции будет зависеть от деформируемости рассматриваемых элементов; в этом случае при вычислении сил инерции приходится использовать и данные сопротивления материалов.

В качестве первого примера исследуем колебания груза Q, подвешенного к нижнему концу призматического стержня длиной l, площадью поперечного сечения F и удельным весом

Предположим, что при колебаниях перемещения всех сечений стержня по отношению к закрепленному концу меняются по тому же закону, что и при статическом растяжении, т. е. пропорционально расстоянию от закрепленного сечения.

Расчет динамического коэффициента при ударной нагрузке. Основные положения. Явление удара получается в том случае, когда скорость рассматриваемой части конструкции или соприкасающихся с ней частей изменяется в очень короткий период времени.

В течение очень короткого промежутка времени упругая система С испытает некоторую деформацию. Обозначим через перемещение тела В (местной деформацией которого пренебрежем) в направлении удара.

Опыты с определением модуля упругости по наблюдениям над упругими колебаниями стержней показывают, что и при динамическом действии нагрузок закон Гука остается в силе, и модуль упругости сохраняет свою величину.

Из этих формул видно, что величина динамических деформаций, напряжений и усилий зависит от величины статической деформации, т. е. от жесткости и продольных размеров ударяемого тела; ниже это дополнительно будет показано на отдельных примерах.


Предел прочности для шлифованных образцов